MATRIZES POLIMÉRICAS PARA ENCAPSULAÇÃO DE BIOINSETICIDAS

Carla Moraes Lêdo de Melo, Márcia Nieves Carneiro da Cunha, José Paula Oliveira, José Manoel Wanderley Duarte Neto, Ana Lúcia Figueiredo Porto

Resumo


Os bioinseticidas apresentam uma alta suscetibilidade a fatores ambientais e a busca por técnicas que protejam esses princípios ativos vem sendo propostas. O objetivo do trabalho foi apresentar a técnica de microencapsulação em biomoléculas inseticidas afim de promover a proteção contra estresses ambientais, assim como os principais polímeros utilizados no processo. A pesquisa resultou em poucos trabalhos na microencapsulação de biomoléculas para este fim. Na maior parte deles, a técnica utilizada foi a de spray drying e o material de microencapsulamento foram os polímeros de carboidratos, se destacando o alginato. Essa técnica apresenta-se eficiente para conservação, durabilidade de prateleira e proteção a fatores ambientais.


Palavras-chave


microencapsulação, polímeros, inseticidas biológicos

Texto completo:

PDF

Referências


ABERKANE, L.; ROUDAUT, G.; SAUREL, R. Encapsulation and oxidative stability of pufa-rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology, v. 7, n. 5, p. 1505-1517, 2014.

AGNIHOTRI, N., et. al. “Microencapsulation – a novel approach in drug delivery”, Indo Global Journal of Pharmaceutical Sciences, v. 2 No. 1, pag. 1-20. 2012.

ALARCÓN-ALARCÓN, C. et. al. Protection of astaxanthin from photodegradation by its inclusion in hierarchically assembled nano and microstructures with potential as food. Food Hydrocolloides. v 83. pp. 36-44. 2018. 10.1016/j.foodhyd.2018.04.033

ANEKELLA, K.; ORSAT, V. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, v. 50, n. 2, p. 17-24, 2013.

ANNUNZIATA et al. Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology. v. 139. 2020. 10.1016/j.fct.2020.111248

ARTHURS, S., DARA, S.K., Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology. v. 165, p. 13–21. 2019. https://doi.org/ 10.1016/j.jip.2018.01.008.

ASSIS, L. M.; ZAVAREZE, E. R.; PRENTICE-HERNÁNDEZ, C.; SOUZA-SOARES, L. A. Características de nanopartículas e potenciais de aplicações em alimentos. Brazilian Journal Food Technology, Campinas, 2012. v. 15, n. 2, p. 99-109, jan./mar.,

ASSUNÇÃO, L. S. Estudo prospectivo sobre encapsulamento de compostos bioativos. Revista Geintec - Gestão, Inovação E Tecnologias, v. 4, p. 1382-1391, 2014.

AUGUSTIN, M.A.; HEMAR, Y. Nano- and micro-structured assemblies for encapsulation of food ingredientes. Chemical Society Reviews. v. 38. pp. 902-912. 2009. 10.1039/b801739p

BEHLE, R. W.; Tamez-guerra, P.; Mcguire, M. R. Field Activity and Storage Stability of Anagrapha falcifera Nucleopolyhedrovirus (AfMNPV) in Spray-Dried Lignin-Based Formulations, Journal of Economic Entomology, v. 96, pp. 1066–1075. 2003. https://doi.org/10.1093/jee/96.4.1066

BALE, J.S., VAN LENTEREN, J.C., BIGLER, F. Biological control and sustainable food production. Philosophical. Transactions B. v. 363, p. 761–776. 2008. https://doi.org/10.1098/ rstb.2007.2182.

BARRERA-CORTÉS, J. et.al. Reducing the microcapsule diameter by micro-emulsion to improve the insecticidal activity of Bacillus thuringiensis encapsulated formulations. Biocontrol Science and Technology. VOL. 27, NO. 1, pag. 42–57. 2017.

BARRETO, A. R.; RAMÍREZ-MÉRIDA, L. G.; ETCHEPARE, M. A.; JACOB-LOPES, E.; MENESES, C. R. Coating Materials Used in the Microencapsulation of Probiotics. Ciência e Natura, v. 37, p. 164-174, 2015.

BEZERRA, D. G.; et. al. Microencapsulated extracts from Azadirachta indica seeds: Acquisition, characterization, and use in controlling Helicoverpa armigera. Drying Technology. 2020. DOI: 10.1080/07373937.2020.1745823

BEZERRA, et. al. Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose, v. 23, pp. 1459–1470. 2016.

BRAR, K. S. et al. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry, v. 41, n. 2, p. 323 – 342, 2006.

CAM, M.; ICYER, N.C.; ERDOGAN, F. Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. Lebensmittel-Wissenschaft & Technologie, v. 55. pp. 117-123. 2014. 10.1016/j.lwt.2013.09.011

CAMPOS, E. V. R et al. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators, v. 105, p. 483-495, 2019.

CANDIAGO, N. T.; ANSILIERO, R.; GELINSKI, J. L. N. Revisão sobre métodos de microencapsulação. Anuário Pesquisa e Extensão Unoesc Videira. v. 3, p. e17281 e 17281, 2018.

CARVALHO, W.; CANILHA, L.; SILVA, S. S. D. Uso de biocatalisadores imobilizados: uma alternative para a condução de bioprocessos. Revista Analytica, v. 60-70, 2006.

CHANDLER, D., DAVIDSON, G., GRANT, W.P., Greaves, J., Tatchell, G.M. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Journal of Food Science and Technology. v. 19, p. 275–283. 2008. https://doi.org/10.1016/ j.tifs.2007.12.009.

COOK, M. T., et al. Microencapsulation of probiotics for gastrointestinal delivery. Journal Of Controlled Release, v. 162, n. 1, p. 56-67, 2012.

COPPING, L.G., MENN, J.J. Biopesticides: a review of their action, applications and efficacy. Pest Management Science. v. 56, p. 651–676. 2000. https://doi.org/10.1002/1526-4998 (200008)56:8%3C651::AID-PS201%3E3.0.CO;2-U.

DA SILVA, B. V., BARREIRA, J. C., & OLIVEIRA, M. B. P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science & Technology, 50, 144–158. 2016.

DARA, S.K. Microbial control of arthropod pests in small fruits and vegetables in temperate climate. In: Lacey, L.A. (Ed.), Microbial Control of Insect and Mite Pests: from Theory to Practice. Elsevier Inc., London, 2017. p. 209–221. https://doi.org/ 10.1016/B978-0-12-803527-6.00014-7.

DICKINSON, E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, v. 24, p.4-12, 2012.

DUNHAM, B. Microbial pesticides: a key role in the multinational portfolio. New Ag International. pp. 32–36. 2015.

ECKERT, C.; et. al. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT-Food science and technology. v. 82, pag. 176–183. 2017. DOI: 10.1016/j.lwt.2017.04.045

ESKI, A.; DEMIR, İ.; SEZEN, K.; DEMIRBAĞ, Z. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World journal of microbiology & biotechnology. v. 33, n. 5, pag. 95. 2017. DOI: 10.1007/s11274-017-2263-0

ESKI, A.; DEMIRBAĞ, Z.; DEMIR, İ. Microencapsulation of an indigenous isolate of Bacillus thuringiensis by spray drying. Journal of microencapsulation, v. 36, n. 1, p. 1-9, 2019.

ESSER-KAHN, A. P. et. al. Triggered Release from Polymer Capsules. Macromolecules. v. 44, pp. 5539-5553. 2011. DOI: 10.1021/ma201014n

ESSER-KAHN, A.P. et. al. Triggered release from polymer capsules. Macromolecules. v. 44. p. 5539-5553. 2011. 10.1021/ma201014n

ESTEVINHO, B.N. et. al. Microencapsulation of Gulosibacter molinativorax ON4Tcells by a spray-drying process using different biopolymers. Journal of Hazardous Materials. v. 338. p. 85-92. 2017. 10.1016/j.jhazmat.2017.05.018

EZHILARASI, P. N.; KARTHIK, P.; CHHANWAL, N.; ANANDHARAMAKRISHNAN, C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technology, v. 6, p. 628-647, 2013.

FERNÁNDEZ-PÉREZ, M. et. al. Lignin and lignosulfonate-based formulations to protect pyrethrins against photodegradation and volatilization. Industrial & Engineering Chemistry Research. v. 53. pp. 13557-13564. 2014. 10.1021/ie500186e

FONTANIELLA, B.; RODRÍGUEZ, C. W.; PIÑÓN, D.; VICENTE, C.; LEGAZ, M. E. Identification of xanthans isolated from sugarcane juices obtained from scalded plants infected by Xanthomonas albilineans. Journal Of Chromatography B, v. 770, n. 1-2, p. 275-281, 2002.

GALUS, S.; KADZIŃSKA, J. Food applications of emulsion-based edible films and coatings. Trends in Food Science and Technology, v. 45, n.2, p. 273-283, 2015

GARCÍA-GUTIÉRREZ K, et al. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. Bioprocess and Biosystems Engineering, 3, v. 4 pp. 701–708. 2011.

GARCÍA-SALDAÑA, J.S. et al. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chemistry, v. 201, pp. 94-100. 2016

GLARE, T., CARADUS, J., GELERNTER, W., JACKSON, T., KEYHANI, N., RGEN KO ¨ HL, J., MARRONE, P., MORIN, L., STEWART, A. Have biopesticides come of age? Trends Biotechnology. v. 30, pp. 250–258.

GLARE, T.R., O’CALLAGHAN, M. Microbial biopesticides for control of invertebrates: progress from New Zealand. Journal of Invertebrate Pathology. v. 165, p. 82–88. 2019. https://doi.org/ 10.1016/j.jip.2017.11.014.

HE, X. et al. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Applied microbiology and biotechnology, v. 101, n. 7, p. 2779-2789, 2017.

HOLKEM, A. T.; CODEVILLA, C. F.; DE MENEZES, C. R. Emulsificação/gelificação iônica interna: Alternativa para microencapsulação de compostos bioativos. Ciência e Natura, v. 37, n. 5, p. 116-124, 2015.

Industrial Crops and Products. v. 53. p. 209-216. 2014. 10.1016/j.indcrop.2013.12.038

KAMEL, S.; ALI, N.; JAHANGIR, K.; SHAH, S. M.; EL-GENDY, A. A. Pharmaceutical significance of cellulose: a review. Express Polymer Letters, v. 2, n. 11, p. 758- 778, 2008.

KASHYAP, P.L.; XIANG, X.; HEIDEN, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. v. 77. p. 36-51. 2015. 10.1016/j.ijbiomac.2015.02.039

KHORRAMVATAN S. et al. The effect of polymers on the stability of microencapsulated formulations of Bacillus thuringiensis subsp. Kurstaki (Bt-KD2) after exposure to ultra violet radiation. Biocontrol Science and Technology, v. 24, pp. 215–220. 2014.

KOÇ, M. et al. Microencapsulation of Extra Virgin Olive Oil by Spray Drying : Effect of Wall Materials Composition, Process Conditions, and Emulsification Method. Food and Bioprocess Technology. v. 8, p. 301-18. 2015.

LACEY, L.A., GRZYWACZ, D., SHAPIRO-ILAN, D.I., Frutos, R., Brownbridge, M., Goettel, M.S. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology v. 132, p. 1–41. 2015. https://doi.org/10.1016/j.jip.2015.07.009.

LIU, C. P., & LIU, S. D. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. Journal of Microencapsulation, 26(5), 377-384. (2009a).

LIU, C. P. & LIU, S. D. Low-temperature spray drying for the microencapsulation of the fungus Beauveria bassiana. Drying Technology, v. 27, pp.747-753. (2009b).

LÓPEZ, A.et. al. Insecticidal activity of microencapsulated Schinus molle essential oil. Industrial Crops and Products, v. 53, p. 209-216. 2014

MARTINS, I.M. et. al. Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal. v. 45. pp. 191-200. 2014.

MCCLEMENTS, D.J.; LI, Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food componentes. Advances in Colloid and Interface Science. v. 159. pp. 213-228. 2010. 10.1016/j.cis.2010.06.010

MCCLEMENTS, D. J. Nanoparticle and microparticle based delivery systems encapsulation, protection and release of active compounds. CRC press, Taylor and Francis group. 572p. 2014.

MISHRA, M. Handbook of Encapsulation and Controlled Release. Taylor & Francis Group, Boca Raton, p. 1516. 2016

MORTAZAVIAN, A. M.; AZIZI, A.; EHSANI, M. R.; RAZAVI, S. H.; MOUSAVI, M.; SOHRABVANDI, S.; REINHEIMER, J. A. Survival of encapsulated probiotic bacteria in iranian yogurt drink (doogh) after the product exposure to simulated gastrointestinal conditions. Milchwissenschaft, v. 63, n. 4, p. 427-429, 2008.

MOURA, W. S. et al. Cassava starch-based essential oil microparticles preparations: Functionalities in mosquito control and selectivity against non-target organisms. Industrial Crops and Products, v. 162, p. 113289. 2021

MUÑOZ-CELAYA, A. L et al. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydrate Polymers. v. 88, p. 1141-1148. 2012.

OLIVEIRA, L. de. et. al. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advancesv. v. 32, p. 1550-1561. 2014. 10.1016/j.biotechadv.2014.10.010

PARTANEN, R. et. al. Microencapsulation of caraway extract in beta-cyclodextrin and modified starches. European Food Research and Technology. v. 214. p. 242-247. 2002

PEREIRA, K. C. et al. Microencapsulação e liberação controlada por difusão de ingredientes alimentícios produzidos através da secagem por atomização: revisão. Brazilian Journal of Food Technology, v. 21, 2018.

PÉREZ-LANDA, I.D. et al. Photoprotection and release study of spinosad biopolymeric microparticles obtained by spray drying. Powder Technology. v. 377, pp. 514-522, 2021

PEREZ-MASIA, et. al. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemical. v. 168. pp. 124-133. 2015. 10.1016/j.foodchem.2014.07.051

PETERS, R. et. al. Identification and characterization of organic nanoparticles in food. Trends in Analytical Chemistry, v. 30, p. 100-112, 2011.

PHADUNGATH, C. Casein micelle structure: a concise review. Journal of Science and Technology. v. 27, n. 1, pags. 201-212. 2005

PREININGER, C., SAUER, U., BEJARANO, A., BERNINGER, T., 2018. Concepts and applications of foliar spray for microbial inoculants. Applied Microbiology and Biotechnology. 102, 7265–7282. https://doi.org/10.1007/s00253-018-9173-4.

PUTRI, Y. R. P.; et. al. Study controlled release, toxicity test, and pesticide test of microcapsule eugenol with casein micelle. AIP Conference Proceedings. v. 2085, n. 020015. 2019

RAJAM, R.; ANANDHARAMAKRISHNAN, C. Microencapsulation Of Lactobacillus plantarum (MTCC 5422) with fructo oligosaccharide as wall material by spray drying. LWT - Food Science and Technology, v. 60, n. 2, p. 773-780, 2015.

RIBEIRO, E. P.; SERAVALLI, E. A. G. Química De Alimentos. Instituto Mauá De Tecnologia: Blücher, 2007.

RICHARDS, E.H. et al. Novel control methods for insect pests: Development of a microencapsulation procedure for proteinaceous bioactives intended for oral delivery. Pest Management Science, v. 71, p. 1238-1246. 2015,

RODRÍGUEZ, A. P. G.; et. al. Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: studies on the propagation in vitro. Bioprocess and biosystems engineering, v. 38, n. 2, pag. 329–339. 2015. DOI: 10.1007/s00449-014-1273-7

SERFERT, Y.; DRUSCH, S.; SCHWARZ, K. Sensory odour profiling and lipid oxidation status of fish oil and microencapsulated fish oil. Food Chemical., v. 123. p. 968-975. 2010. 10.1016/j.foodchem.2010.05.047

SHAHIDI, F.; HAN, X. Q. Encapsulation of food ingredients. Critical Reviewand Food Science and Nutrition, v. 33, n. 6, p. 501-47, 1993.

SHARMA, R.; GOEL, A. Development of insect repellent finish by a simple coacervation microencapsulation technique. International Journal of Clothing Science and Technology. v. 30, n. 2, pag. 152-158. 2018. DOI: 10.1108/IJCST-02-2017-0022

SHISHIR, M.R.I.; CHEN, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology. v. 65, pp. 49-67. 2017

SHOKRI, Z., et al. Factors affecting viability of Bifidobacterium bifidum during spray drying. Daru-journal of pharmaceutical sciences, v. 23, n. 7. 2015. DOI: 10.1186/s40199-014-0088-z

SITTIPUMMONGKOL, K. et al. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polymer Bulletin, v. 76, pp. 3803-3817. 2019.

SOHAIL, A.; et al. Survivability of Probiotics Encapsulated in Alginate Gel Microbeads Using a Novel Impinging Aerosols Method. International Journal of Food Microbiology, v. 145, n. 1, p. 162-68, 2011.

SPORLEDER, M., LACEY, L.A. Biopesticides. In: Alyokhin, A., Vincent, C., Giordanengo, P. (Eds.), Insect Pests of Potato. Elsevier Inc., London, 2013. p. 463–497. https://doi.org/10.1016/B978-0-12-386895-4.00016-8.

SUAVE, J. et. al. Microencapsulação: Inovação em diferentes áreas. Health and Environment Journal, v. 7, pp. 12-20. 2006.

TAMEZ-GUERRA, P. et al. Storage stability of Anagrapha falcifera nucleopolyhedrovirus in spray-dried formulations, Journal of Invertebrate Pathology, v. 79, pp. 7-16. 2002.

THAKORE, Y. The biopesticide market for global agricultural use. Industrial Biotechnology. p. 194–208. 2006.

TIMILSENA Y.P, et al. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules. v. 121, pp. 1276-1286. 2019

TÜRKOĞLU, G.C. et al. Micro- and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iranian Polymer Journal 29, 321–329 2020. https://doi.org/10.1007/s13726-020-00799-4

WEST, S.D. Determination of the naturally derived insect control agent Spinosad and its metabolites in soil, sediment, and water by HPLC with UV detection. Journal of Agricultural and Food Chemistry. v. 45, pag. 3107-3113. 1997. DOI: 10.1021/jf9701648

XIAO, Z. et al. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of Science Food and Agriculture, v. 94, pp. 1482-1494. 2014.

XING, Y.; XU, Q.; MA, Y.; CHE, Z.; CAI, Y.; JIANG, L. Effect of Porous Starch Concentrations on the Microbiological Characteristics of Microencapsulated Lactobacillus Acidophilus. Food & Function, v. 5, n. 5, p. 972-983, 2014.

ZAITOON, A.; LIM, L.; SCOTT-DUPREE, C. Activated release of ethyl formate vapor from its precursor encapsulated in ethyl Cellulose/Poly(Ethylene oxide) electrospun nonwovens intended for active packaging of fresh produce. Food Hydrocolloides. v. 112. 2021. 10.1016/j.foodhyd.2020.106313

ZEHNDER, G.; et. al. Arthropod Pest Management in Organic Crops. Annual Review of Entomology, v. 52, pp. 57-80, 2007.




DOI: https://doi.org/10.12661/pap.2021.015

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM

Apontamentos

  • Não há apontamentos.



Pesquisa Agropecuária Pernambucana
ISSN 0100-8501 (impresso)
ISSN 2446-8053 (online)


Instituto Agronômico de Pernambuco (IPA)
Av. General San Martin, 1371
Bongi, Recife, PE, CEP 50761-000
revista.pap@ipa.br