DIVERSIDADE, MECANISMOS DE ATUAÇÃO E POTENCIAL AGRÍCOLA DE BACTÉRIAS PROMOTORAS DE CRESCIMENTO DE PLANTAS, USANDO MILHO COMO CULTURA EXEMPLO

Johny Jesus Mendonça, Mario Andrade Lira Junior, Eric Xavier Carvalho, Giselle Gomes Monteiro Fracetto, Felipe José Cury Fracetto, Michelle Justino Gomes Alves, José de Paula Oliveira

Resumo


As Bactérias Promotoras de Crescimento de Plantas (BPCP) começaram a ser mais intensivamente estudadas nos últimos anos, em função do crescente interesse no aumento da sustentabilidade agrícola. Devido a esse interesse, o número de publicações no tema tem crescido exponencialmente, o mesmo ocorrendo com a diversidade biológica que é encontrada para estas bactérias em muitas espécies vegetais e ambientes. Além da diversidade biológica, também há grande variedade de meios de atuação propostos para esta promoção de crescimento, com tendência de maior efeito nas plantas cultivadas sob estresses abióticos, particularmente seca. O potencial de uso destas bactérias sob condições de campo pode ser exemplificado pelo crescente uso na cultura do milho, que é a segunda mais importante para o mercado de inoculantes agrícolas no Brasil.


Palavras-chave


inoculante; milho; promoção de crescimento; diversidade

Texto completo:

PDF

Referências


AAMIR, M.; ASLAM, A.; KHAN, M. Y.; JAMSHAID, M. U.; AHMAD, M.; ASGHAR, H. N.; ZAHIR, Z. A. Co-inoculation with rhizobium and plant growth promoting rhizobacteria (pgpr) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian Journal of Agriculture and Biology, v. 1, n. 1, p. 17-22, 2013.

ABDEL LATEF, A. A. H.; ABU ALHMAD, M. F.; KORDROSTAMI, M.; ABO–BAKER, A.-B. A.-E.; ZAKIR, A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. Journal of Plant Growth Regulation, 2020.

AFZAL, I.; IQRAR, I.; SHINWARI, Z. K.; YASMIN, A. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regulation, v. 81, n. 3, p. 399-408, 2017.

AFZAL, I.; SHINWARI, Z. K.; SIKANDAR, S.; SHAHZAD, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, v. 221, p. 36-49, 2019.

ALOO, B. N.; MAKUMBA, B. A.; MBEGA, E. R. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, v. 219, p. 26-39, 2019.

AMIN, A.; LATIF, Z. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. Journal of Basic Microbiology, v. 57, n. 3, p. 204-217, 2017.

ANDREOTE, F. D.; AZEVEDO, J. L.; ARAÚJO, W. L. Assessing the diversity of bacterial communities associated with plants. Brazilian Journal of Microbiology, v. 40, n. 3, p. 417-432, 2009.

ANTUNES, J. E. L.; LYRA, M. C. C. P.; OLLERO, F. J.; FREITAS, A. D. S.; OLIVEIRA, L. M. S.; ARAÚJO, A. S. F.; FIGUEIREDO, M. V. B. Diversity of plant growth-promoting bacteria associated with sugarcane. Genetics and Molecular Research, v. 16, n. 2, 2017.

ARAÚJO, M. D. S. B.; SAMPAIO, E. V. S. B.; SCHAEFER, C. E. R. Phosphorus desorption affected by drying and wetting cycles in Ferralsols and Luvisols of Brazilian Northeast. Archives of Agronomy and Soil Science, v. 63, n. 2, p. 242-249, 2017.

ARCHANA, G.; BUCH, A.; KUMAR, G. N. Pivotal Role of Organic Acid Secretion by Rhizobacteria in Plant Growth Promotion. In: (Ed.). Dordrecht: Springer Netherlands, 2012. p.35-53.

ARMENDARIZ, A. L.; TALANO, M. A.; OLMOS NICOTRA, M. F.; ESCUDERO, L.; BRESER, M. L.; PORPORATTO, C.; AGOSTINI, E. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry, v. 138, p. 26-35, 2019.

ARRUDA, L.; BENEDUZI, A.; MARTINS, A.; LISBOA, B.; LOPES, C.; BERTOLO, F.; PASSAGLIA, L. M. P.; VARGAS, L. K. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil Ecology, v. 63, p. 15-22, 2013.

ARZANESH, M. H.; ALIKHANI, H. A.; KHAVAZI, K.; RAHIMIAN, H. A.; MIRANSARI, M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, v. 27, n. 2, p. 197-205, 2011.

BAI, Y.; MÜLLER, D. B.; SRINIVAS, G.; GARRIDO-OTER, R.; POTTHOFF, E.; ROTT, M.; DOMBROWSKI, N.; MÜNCH, P. C.; SPAEPEN, S.; REMUS-EMSERMANN, M.; HÜTTEL, B.; MCHARDY, A. C.; VORHOLT, J. A.; SCHULZE-LEFERT, P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, v. 528, n. 7582, p. 364-369, 2015.

BANIK, A.; MUKHOPADHAYA, S. K.; DANGAR, T. K. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, v. 243, n. 3, p. 799-812, 2016.

BARNAWAL, D.; BHARTI, N.; MAJI, D.; CHANOTIYA, C. S.; KALRA, A. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. Journal of Plant Physiology, v. 171, n. 11, p. 884-894, 2014.

BARNAWAL, D.; BHARTI, N.; PANDEY, S. S.; PANDEY, A.; CHANOTIYA, C. S.; KALRA, A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, v. 161, n. 4, p. 502-514, 2017.

BASU, S.; RABARA, R.; NEGI, S. Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, v. 12, p. 43-49, 2017.

BATISTA, B. D.; LACAVA, P. T.; FERRARI, A.; TEIXEIRA-SILVA, N. S.; BONATELLI, M. L.; TSUI, S.; MONDIN, M.; KITAJIMA, E. W.; PEREIRA, J. O.; AZEVEDO, J. L.; QUECINE, M. C. Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol Res, v. 206, p. 33-42, 2018.

BEUTLER, A. N.; BURG, G. M.; DEAK, E. A.; SCHMIDT, M. R.; GALON, L. Effect of nitrogen-fixing bacteria on grain yield and development of flooded irrigated rice. Revista Caatinga, v. 29, n. 1, p. 11-17, 2016.

BHATTACHARYYA, P. N.; JHA, D. K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, v. 28, n. 4, p. 1327-1350, 2012.

BODENHAUSEN, N.; HORTON, M. W.; BERGELSON, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, v. 8, n. 2, p. e56329, 2013.

BOLHUIS, H.; SEVERIN, I.; CONFURIUS-GUNS, V.; WOLLENZIEN, U. I. A.; STAL, L. J. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME Journal, v. 4, n. 1, p. 121-130, 2010.

BRASIL, M. A. P. A. Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura : plano ABC (Agricultura de Baixa Emissão de Carbono). MINISTÉRIO DA AGRICULTURA, P. E. A.: MAPA: 173 p. 2012.

BULGARELLI, D.; SCHLAEPPI, K.; SPAEPEN, S.; VAN THEMAAT, E. V. L.; SCHULZE-LEFERT, P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, v. 64, p. 807-838, 2013.

BULGARI, D.; CASATI, P.; BRUSETTI, L.; QUAGLINO, F.; BRASCA, M.; DAFFONCHIO, D.; BIANCO, P. A. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. Journal of Microbiology, v. 47, n. 4, p. 393-401, 2009.

BURR, T. J.; CAESAR, A. Beneficial plant bacteria. Critical Reviews in Plant Sciences, v. 2, n. 1, p. 1-20, 1984.

CALVO, P.; WATTS, D. B.; KLOEPPER, J. W.; TORBERT, H. A. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens. Canadian Journal of Microbiology, v. 62, n. 12, p. 1041-1056, 2016.

CANFIELD, D. E.; GLAZER, A. N.; FALKOWSKI, P. G. The Evolution and Future of Earth's Nitrogen Cycle. Science, v. 330, n. 6001, p. 192-196, 2010.

CARDOSO, I. C. M.; FILHO, O. K.; MARIOTTO, J. R.; MIQUELLUTI, D. J.; VICENTE, D.; NEVES, A. N. Ocorrência de bactérias endofíticas do gênero Azospirillum em arroz irrigado no estado de Santa Catarina. Revista de Ciências Agroveterinárias, v. 9, n. 2, p. 178-186, 2010.

CARVALHO, E. X.; MENEZES, R. S. C.; FREITAS, A. D. S.; SAMPAIO, E. V. B. S.; SIMÕES NETO, D. E.; TABOSA, J. N.; PRIMO, D. C.; QUEIROZ, R. O. The 15N natural abundance technique to assess the potential of biological nitrogen fixation (BNF) in some important C4 grasses. Australian Journal of Crop Science, v. 11, n. 12, p. 1559-1564, 2017.

CASSÁN, F.; PERRIG, D.; SGROY, V.; MASCIARELLI, O.; PENNA, C.; LUNA, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, v. 45, n. 1, p. 28-35, 2009.

CAVERO, J.; FARRE, I.; DEBAEKE, P.; FACI, J. M. Simulation of maize yield under water stress with the EPICphase and CROPWAT models. Agronomy Journal, v. 92, p. 679-690, 2000.

CHALK, P. M. The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis, v. 69, n. 2, p. 63-80, 2016.

CHANDRA, D.; SRIVASTAVA, R.; GUPTA, V. V. S. R.; FRANCO, C. M. M.; PAASRICHA, N.; SAIFI, S. K.; TUTEJA, N.; SHARMA, A. K. Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant and Soil, 2019.

CHATTERJEE, P.; KANAGENDRAN, A.; SAMADDAR, S.; PAZOUKI, L.; SA, T. M.; NIINEMETS, Ü. Corrigendum to “Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis” [700 (2020) 134453] (Science of the Total Environment (2020) 700, (S0048969719344444), (10.1016/j.scitotenv.2019.134453)). Science of the Total Environment, v. 716, 2020.

CHAUDHARY, H. J.; PENG, G.; HU, M.; HE, Y.; YANG, L.; LUO, Y.; TAN, Z. Genetic Diversity of Endophytic Diazotrophs of the Wild Rice, Oryza alta and Identification of the New Diazotroph, Acinetobacter oryzae sp. nov. Microbial Ecology, v. 63, n. 4, p. 813-821, 2012.

CHELIUS, M. K.; TRIPLETT, E. W. The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L. Microb Ecol, v. 41, n. 3, p. 252-263, 2001.

CHERIF-SILINI, H.; SILINI, A.; YAHIAOUI, B.; OUZARI, I.; BOUDABOUS, A. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Annals of Microbiology, v. 66, n. 3, p. 1087-1097, 2016.

CHERIF-SILINI, H.; THISSERA, B.; BOUKET, A. C.; SAADAOUI, N.; SILINI, A.; ESHELLI, M.; ALENEZI, F. N.; VALLAT, A.; LUPTAKOVA, L.; YAHIAOUI, B.; CHERRAD, S.; VACHER, S.; RATEB, M. E.; BELBAHRI, L. Durum Wheat Stress Tolerance Induced by Endophyte Pantoea agglomerans with Genes Contributing to Plant Functions and Secondary Metabolite Arsenal. Int J Mol Sci, v. 20, n. 16, 2019.

CHI, F.; SHEN, S.-H.; CHENG, H.-P.; JING, Y.-X.; YANNI, Y. G.; DAZZO, F. B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and environmental microbiology, v. 71, n. 11, p. 7271-7278, 2005.

COMPANT, S.; CLÉMENT, C.; SESSITSCH, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, v. 42, n. 5, p. 669-678, 2010.

CUSACK, D. F.; SILVER, W.; MCDOWELL, W. H. Biological nitrogen fixation in two tropical forests: Ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, v. 12, n. 8, p. 1299-1315, 2009.

DAR, T. A.; UDDIN, M.; KHAN, M. M. A.; HAKEEM, K. R.; JALEEL, H. Jasmonates counter plant stress: A Review. Environmental and Experimental Botany, v. 115, n. 0, p. 49-57, 2015.

DI SALVO, L. P.; CELLUCCI, G. C.; CARLINO, M. E.; GARCÍA DE SALAMONE, I. E. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize ( Zea mays L.) grain yield and modified rhizosphere microbial communities. Applied Soil Ecology, v. 126, p. 113-120, 2018.

DÖBEREINER, J.; BALDANI, V. L. D.; BALDANI, J. I. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. AGROBIOLOGIA, E.-. Embrapa-Agrobiologia 1995.

DOMENECH, J.; REDDY, M. S.; KLOEPPER, J. W.; RAMOS, B.; GUTIERREZ-MAÑERO, J. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl, v. 51, n. 2, p. 245-258, 2006.

DUNGAIT, J. A.; CARDENAS, L. M.; BLACKWELL, M. S.; WU, L.; WITHERS, P. J.; CHADWICK, D. R.; BOL, R.; MURRAY, P. J.; MACDONALD, A. J.; WHITMORE, A. P.; GOULDING, K. W. Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, v. 434, p. 39-50, 2012.

EDWARDS, J.; JOHNSON, C.; SANTOS-MEDELLÍN, C.; LURIE, E.; PODISHETTY, N. K.; BHATNAGAR, S.; EISEN, J. A.; SUNDARESAN, V.; JEFFERY, L. D. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 8, p. E911-E920, 2015.

EMAMI, S.; ALIKHANI, H. A.; POURBABAEI, A. A.; ETESAMI, H.; SARMADIAN, F.; MOTESSHAREZADEH, B. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, v. 26, n. 19, p. 19804-19813, 2019.

FERNANDES-JÚNIOR, P. I.; AIDAR, S. D. T.; MORGANTE, C. V.; GAVA, C. A. T.; ZILLI, J. É.; SOUZA, L. S. B. D.; MARINHO, R. D. C. N.; NÓBREGA, R. S. A.; BRASIL, M. D. S.; SEIDO, S. L.; MARTINS, L. M. V. The ressurection plant Tripogon spicatus (Poaceae) harbors a diversity of plant growth promoting bacteria in Northeastern Brazilian caatinga. Revista Brasileira de Ciência do Solo, v. 39, p. 993-1002, 2015.

FLORIO, A.; BRÉFORT, C.; GERVAIX, J.; BÉRARD, A.; LE ROUX, X. The responses of NO2−- and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biology and Biochemistry, v. 136, 2019.

FLORIO, A.; POMMIER, T.; GERVAIX, J.; BÉRARD, A.; LE ROUX, X. Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities. Scientific Reports, v. 7, n. 1, p. 8411, 2017.

FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, v. 8, n. 1, 2018a.

FUKAMI, J.; DE LA OSA, C.; OLLERO, F. J.; MEGÍAS, M.; HUNGRIA, M. Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, v. 45, n. 3, 2018b.

FUKAMI, J.; NOGUEIRA, M. A.; ARAUJO, R. S.; HUNGRIA, M. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, v. 6, n. 1, p. 1-13, 2016.

GARCIA, J. E.; MARONICHE, G.; CREUS, C.; SUAREZ-RODRIGUEZ, R.; RAMIREZ-TRUJILLO, J. A.; GROPPA, M. D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res, v. 202, p. 21-29, 2017.

GARCIA, T. V.; KNAAK, N.; FIUZA, L. M. Bactérias endofíticas como agentes de controle biológico na orizicultura. Arquivos do Instituto Biológico, 2015.

GLICK, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, v. 169, n. 1, p. 30-39, 2014.

GLICK, B. R. Introduction to Plant Growth-promoting Bacteria. In: (Ed.). Cham: Springer International Publishing, 2015. p.1-28.

GLICK, B. R.; LI, J.; SHAH, S.; PENROSE, D. M.; MOFFATT, B. A.; KANELLIS, A. K.; CHANG, C.; KLEE, H.; BLEECKER, A. B.; PECH, J. C.; GRIERSON, D. ACC deaminase is central to the functioning of plant growth promoting rhizobacteria. Biology and biotechnology of the plant hormone ethylene II, v. Thira (Santorini), Greece, 5-8 September, 1998. 1999, 293-298; 23 ref., p. Greece, 5-Greece, 8, 1999.

GONZALEZ, A. M.; VIEIRA, R. P.; CARDOSO, A. M.; CLEMENTINO, M. M.; ALBANO, R. M.; MENDONÇA-HAGLER, L.; MARTINS, O. B.; PARANHOS, R. Diversity of bacterial communities related to the nitrogen cycle in a coastal tropical bay. Molecular Biology Reports, v. 39, n. 4, p. 3401-3407, 2012.

GRANADA, C. E.; PASSAGLIA, L. M. P.; DE SOUZA, E. M.; SPEROTTO, R. A. Is Phosphate Solubilization the Forgotten Child of Plant Growth-Promoting Rhizobacteria? Frontiers in Microbiology, v. 9, 2018.

GROBELAK, A.; NAPORA, A.; KACPRZAK, M. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, v. 84, p. 22-28, 2015.

GROVER, M.; NAIN, L.; SAXENA, A. K. Comparision between Bacillus subtilis RP24 and its antibiotic-defective mutants. World Journal of Microbiology and Biotechnology, v. 25, n. 8, p. 1329-1335, 2009.

GUTJAHR, C.; PASZKOWSKI, U. Weights in the balance: Jasmonic acid and Salicylic acid signaling in root-biotroph interactions. Molecular Plant-Microbe Interactions, v. 22, n. 7, p. 763-772, 2009.

HAHN, L.; SÁ, E. L. S. D.; OSÓRIO FILHO, B. D.; MACHADO, R. G.; DAMASCENO, R. G.; GIONGO, A. Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice. Revista Brasileira de Ciência do Solo, v. 40, p. e0160006, 2016.

HARDOIM, P. R.; VAN OVERBEEK, L. S.; BERG, G.; PIRTTILÄ, A. M.; COMPANT, S.; CAMPISANO, A.; DÖRING, M.; SESSITSCH, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, v. 79, n. 3, p. 293-320, 2015.

HARDOIM, P. R.; VAN OVERBEEK, L. S.; ELSAS, J. D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol, v. 16, n. 10, p. 463-71, 2008.

HARMAN, G. E.; UPHOFF, N. Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica, v. 2019, 2019.

HASHEM, A.; TABASSUM, B.; FATHI ABD_ALLAH, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 2019.

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biology and Fertility of Soils, v. 49, n. 7, p. 791-801, 2013.

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Soybean Seed Co-Inoculation with <i>Bradyrhizobium</i> spp. and <i>Azospirillum brasilense</i>: A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences, v. 06, n. 06, p. 811-817, 2015.

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, v. 221, p. 125-131, 2016.

HUNGRIA, M.; RIBEIRO, R. A.; NOGUEIRA, M. A. Draft genome sequences of Azospirillum brasilense strains Ab-V5 and Ab-V6, commercially used in inoculants for grasses and legumes in Brazil. Genome Announcements, v. 6, n. 20, 2018.

IGIEHON, N. O.; BABALOLA, O. O.; AREMU, B. R. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol, v. 19, n. 1, p. 159, 2019.

IKEDA, A. C.; SAVI, D. C.; HUNGRIA, M.; KAVA, V.; GLIENKE, C.; GALLI-TERASAWA, L. V. Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum. Agronomy, v. 42, n. 1, p. 44364, 2020.

JAMES, E. K. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, v. 65, n. 2-3, p. 197-209, 2000.

JI, S. H.; GURURANI, M. A.; CHUN, S. C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, v. 169, n. 1, p. 83-98, 2014.

JOCHUM, M. D.; MCWILLIAMS, K. L.; BORREGO, E. J.; KOLOMIETS, M. V.; NIU, G.; PIERSON, E. A.; JO, Y. K. Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers in Microbiology, v. 10, p. 2106, 2019.

KAKAR, K. U.; NAWAZ, Z.; CUI, Z.; ALMONEAFY, A. A.; ULLAH, R.; SHU, Q. Y. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. Journal of Applied Microbiology, v. 124, n. 3, p. 779-796, 2018.

KAUL, S.; SHARMA, T.; DHAR, M. K. “Omics” tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, v. 7, 2016.

KHAN, A. L.; HALO, B. A.; ELYASSI, A.; ALI, S.; AL-HOSNI, K.; HUSSAIN, J.; AL-HARRASI, A.; LEE, I.-J. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, v. 21, p. 58-64, 2016.

KLOEPPER, J. W. Plant growth-promoting rhizobacteria on radishes. In: Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, 1978, 1978, p.879-882.

KOUR, D.; RANA, K. L.; YADAV, A. N.; YADAV, N.; KUMAR, M.; KUMAR, V.; VYAS, P.; DHALIWAL, H. S.; SAXENA, A. K. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, v. 23, 2020.

KUAN, K. B.; OTHMAN, R.; ABDUL RAHIM, K.; SHAMSUDDIN, Z. H. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. PLOS ONE, v. 11, n. 3, p. e0152478-e0152478, 2016.

LI, H. B.; SINGH, R. K.; SINGH, P.; SONG, Q. Q.; XING, Y. X.; YANG, L. T.; LI, Y. R. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Front Microbiol, v. 8, p. 1268, 2017a.

LI, X.; LUO, L.; YANG, J.; LI, B.; YUAN, H. Mechanisms for Solubilization of Various Insoluble Phosphates and Activation of Immobilized Phosphates in Different Soils by an Efficient and Salinity-Tolerant Aspergillus niger Strain An2. Applied Biochemistry and Biotechnology, v. 175, n. 5, p. 2755-2768, 2015.

LI, Y.; LIU, X.; HAO, T.; CHEN, S.; LI, Y.; LIU, X.; HAO, T.; CHEN, S. Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates. International Journal of Molecular Sciences, v. 18, n. 7, p. 1253-1253, 2017b.

LIAN, B.; ZHOU, X.; MIRANSARI, M.; SMITH, D. L. Effects of salicylic acid on the development and root nodulation of soybean seedlings. Journal Of Agronomy And Crop Science, v. 185, n. 3, p. 187-192, 2000.

LIU, H.; CARVALHAIS, L. C.; CRAWFORD, M.; SINGH, E.; DENNIS, P. G.; PIETERSE, C. M. J.; SCHENK, P. M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, v. 8, n. DEC, 2017.

LOWMAN, S.; KIM-DURA, S.; MEI, C.; NOWAK, J. Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes. Plant and Soil, v. 405, n. 1, p. 47-63, 2016.

LYU, Y.; TANG, H.; LI, H.; ZHANG, F.; RENGEL, Z.; WHALLEY, W. R.; SHEN, J. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply. Frontiers in plant science, v. 7, p. 1939-1939, 2016.

MACHADO, V.; BERLITZ, D. L.; SANTOS MATSUMURA, A. T.; SANTIN, R. C. M.; GUIMARÃES, A.; DA SILVA, M. E.; FIUZA, L. M. Bacteria as biocontrol agents of plant parasitic nematodes. Oecologia Australis, v. 16, n. 2, p. 165-182, 2012.

MAGNANI, G. S.; CRUZ, L. M.; WEBER, H.; BESPALHOK, J. C.; DAROS, E.; BAURA, V.; YATES, M. G.; MONTEIRO, R. A.; FAORO, H.; PEDROSA, F. O.; SOUZA, E. M. Culture-independent analysis of endophytic bacterial communities associated with Brazilian sugarcane. Genetics and Molecular Research, v. 12, n. 4, p. 4549-4558, 2013.

MAHMUD, K.; MAKAJU, S.; IBRAHIM, R.; MISSAOUI, A. Current progress in nitrogen fixing plants and microbiome research. Plants, v. 9, n. 1, 2020.

MARAG, P. S.; SUMAN, A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, v. 214, n. May, p. 101-113, 2018.

MARKS, B. B.; NOGUEIRA, M. A.; HUNGRIA, M.; MEGÍAS, M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express, v. 3, n. 1, p. 21-21, 2013.

MARQUEZ-SANTACRUZ, H. A.; HERNANDEZ-LEON, R.; OROZCO-MOSQUEDA, M. C.; VELAZQUEZ-SEPULVEDA, I.; SANTOYO, G. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genetics and molecular research : GMR, v. 9, n. 4, p. 2372-2380, 2010.

MATTHEWS, A.; PIERCE, S.; HIPPERSON, H.; RAYMOND, B. Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Front Microbiol, v. 10, p. 581, 2019.

MCCUE, P.; ZHENG, Z.; PINKHAM, J. L.; SHETTY, K.; ZHENG, Z. X. A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochemistry, v. 35, n. 6, p. 603-613, 2000.

MENDES, G. O.; FREITAS, A. L. M.; PEREIRA, O. L.; SILVA, I. R.; VASSILEV, N. B.; COSTA, M. D. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Annals of Microbiology, v. 64, n. 1, p. 239-249, 2014.

MENDONÇA, J. J.; LIRA JUNIOR, M. A.; CARVALHO, E. X.; OLIVEIRA, J. P.; FRACETTO, G. G. M.; BASTOS, M. L. R. AVALIAÇÃO IN VITRO DOS MECANISMOS DE PROMOÇÃO DE CRESCIMENTO DAS BACTÉRIAS ISOLADAS DO CAPIM PANGOLÃO. In: XXII Congreso Latinoamericano de la Ciencia del Suelo, 2019,SLACS.

MENÉNDEZ, E.; PAÇO, A. Is the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable crops. Life, v. 10, n. 3, 2020.

MONTAÑEZ, A.; ABREU, C.; GILL, P. R.; HARDARSON, G.; SICARDI, M. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biology and Fertility of Soils, v. 45, n. 3, p. 253-263, 2009.

MORETTI, L. G.; CRUSCIOL, C. A. C.; KURAMAE, E. E.; BOSSOLANI, J. W.; MOREIRA, A.; COSTA, N. R.; ALVES, C. J.; PASCOALOTO, I. M.; RONDINA, A. B. L.; HUNGRIA, M. Effects of growth‐promoting bacteria on soybean root activity, plant development, and yield. Agronomy Journal, 2020.

MUTAI, C.; NJUGUNA, J.; GHIMIRE, S. Brachiaria Grasses (Brachiaria spp.) harbor a diverse bacterial community with multiple attributes beneficial to plant growth and development. MicrobiologyOpen, v. 6, n. 5, p. e00497-e00497, 2017.

NIEHUS, R.; PICOT, A.; OLIVEIRA, N. M.; MITRI, S.; FOSTER, K. R. The evolution of siderophore production as a competitive trait. Evolution, v. 71, n. 6, p. 1443-1455, 2017.

OLIVEIRA-LONGATTI, S. M.; MARRA, L. M.; CARVALHO, T. S.; MOREIRA, F. M. S. The culture medium volume and the inoculation method should be considered in semi-quantitative screening of calcium phosphate solubilization by bacteria. Acta Scientiarum. Agronomy, v. 42, p. e44332, 2020.

PAREDES, I.; OTERO, N.; SOLER, A.; GREEN, A. J.; SOTO, D. X. Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agriculture, Ecosystems and Environment, v. 294, 2020.

PATEL, J. K.; ARCHANA, G. Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant and Soil, v. 417, n. 1-2, p. 99-116, 2017.

PEREIRA, N. C. M.; GALINDO, F. S.; GAZOLA, R. P. D.; DUPAS, E.; ROSA, P. A. L.; MORTINHO, E. S.; FILHO, M. C. M. T. Corn Yield and Phosphorus Use Efficiency Response to Phosphorus Rates Associated With Plant Growth Promoting Bacteria. Frontiers in Environmental Science, v. 8, 2020.

PEREZ-MONTANO, F.; ALIAS-VILLEGAS, C.; BELLOGIN, R. A.; DEL CERRO, P.; ESPUNY, M. R.; JIMENEZ-GUERRERO, I.; LOPEZ-BAENA, F. J.; OLLERO, F. J.; CUBO, T. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological Research, v. 169, n. 5-6, p. 325-36, 2014.

PERNAMBUCO, G. D. E. D. Plano Estadual de Mitigação e de Adaptação às Mudanças Climáticas para a consolidação de uma economia de baixa Emissão de carbono na Agricultura - Plano ABC Pernambuco. Decreto 45165/2017. PERNAMBUCO, A. L. D.: Assembléia Legislativa de Pernambuco. Decreto 45165/2017 2017.

PIETERSE, C. M. J.; DE JONGE, R.; BERENDSEN, R. L. The Soil-Borne Supremacy. Trends in Plant Science, v. 21, n. 3, p. 171-173, 2016.

PIROMYOU, P.; BURANABANYAT, B.; TANTASAWAT, P.; TITTABUTR, P.; BOONKERD, N.; TEAUMROONG, N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, v. 47, n. 1, p. 44-54, 2011.

PUENTE, M. L.; GUALPA, J. L.; LOPEZ, G. A.; MOLINA, R. M.; CARLETTI, S. M.; CASSÁN, F. D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis, v. 76, n. 1, p. 41-49, 2018.

PUENTE, M. L.; ZAWOZNIK, M.; DE SABANDO, M. L.; PEREZ, G.; GUALPA, J. L.; CARLETTI, S. M.; CASSÁN, F. D. Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis, v. 77, n. 1, p. 41-47, 2019.

PURI, A.; PADDA, K. P.; CHANWAY, C. P. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Applied Soil Ecology, v. 149, p. 103538, 2020.

QIN, S.; XING, K.; JIANG, J.-H.; XU, L.-H.; LI, W.-J. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, v. 89, n. 3, p. 457-473, 2011.

RAMAKRISHNA, W.; YADAV, R.; LI, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, v. 138, p. 10-18, 2019.

RANUM, P.; PEÑA-ROSAS, J. P.; GARCIA-CASAL, M. N. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, v. 1312, p. 105-12, 2014.

REED, S. C.; CLEVELAND, C. C.; TOWNSEND, A. R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution and Systematics, v. 42, p. 489-512, 2011.

REN, G.; ZHANG, H.; LIN, X.; ZHU, J.; JIA, Z. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Frontiers in microbiology, v. 6, p. 855-855, 2015.

RINCÓN-MOLINA, C. I.; MARTÍNEZ-ROMERO, E.; RUIZ-VALDIVIEZO, V. M.; VELÁZQUEZ, E.; RUIZ-LAU, N.; ROGEL-HERNÁNDEZ, M. A.; VILLALOBOS-MALDONADO, J. J.; RINCÓN-ROSALES, R. Plant growth-promoting potential of bacteria associated to pioneer plants from an active volcanic site of Chiapas (Mexico). Applied Soil Ecology, v. 146, p. 103390, 2020.

RODRIGUES, A. A.; ARAÚJO, M. V. F.; SOARES, R. S.; DE OLIVEIRA, B. F. R.; RIBEIRO, I. D. A.; SIBOV, S. T.; VIEIRA, J. D. G. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. Anais da Academia Brasileira de Ciencias, v. 90, n. 4, p. 3813-3829, 2018.

ROTARU, V. I.; RISNOVEANU, L. Interactive Effects of Plant Growth-Promoting Rhizobacteria and Phosphates Sources on Growth and Phosphorus Nutrition of Soybean under Moderate Drought. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 47, n. 3, 2019.

SAGHAFI, D.; DELANGIZ, N.; LAJAYER, B. A.; GHORBANPOUR, M. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, v. 9, n. 7, 2019.

SALA, V. M. R.; CARDOSO, E. J. B. N.; DE FREITAS, J. G.; DA SILVEIRA, A. P. D. Interaction of new diazotrophic endophytic bacteria and nitrogen fertilization on wheat crop under field conditions. Revista Brasileira de Ciencia do Solo, v. 32, n. 3, p. 1099-1106, 2008.

SANTOS, M. L. D.; BERLITZ, D. L.; WIEST, S. L. F.; SCHÜNEMANN, R.; KNAAK, N.; FIUZA, L. M. Benefits Associated with the Interaction of Endophytic Bacteria and Plants. Brazilian Archives of Biology and Technology, v. 61, n. 0, 2018.

SANTOYO, G.; MORENO-HAGELSIEB, G.; DEL CARMEN OROZCO-MOSQUEDA, M.; GLICK, B. R. Plant growth-promoting bacterial endophytes. Microbiological Research, v. 183, p. 92-99, 2016.

SARFRAZ, R.; HUSSAIN, A.; SABIR, A.; BEN FEKIH, I.; DITTA, A.; XING, S. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—a review. Environmental Monitoring and Assessment, v. 191, n. 4, 2019.

SARKAR, A.; GHOSH, P. K.; PRAMANIK, K.; MITRA, S.; SOREN, T.; PANDEY, S.; MONDAL, M. H.; MAITI, T. K. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in microbiology, v. 169, n. 1, p. 20-32, 2018.

SARKAR, A.; REINHOLD-HUREK, B. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72. PLoS ONE, v. 9, n. 2, p. 12-12, 2014.

SAXENA, A. K.; KUMAR, M.; CHAKDAR, H.; ANUROOPA, N.; BAGYARAJ, D. J. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol, 2019.

SCHOLZ, V. V.; MECKENSTOCK, R. U.; NIELSEN, L. P.; RISGAARD-PETERSEN, N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nature Communications, v. 11, n. 1, 2020.

SESSITSCH, A.; HARDOIM, P.; DÖRING, J.; WEILHARTER, A.; KRAUSE, A.; WOYKE, T.; MITTER, B.; HAUBERG-LOTTE, L.; FRIEDRICH, F.; RAHALKAR, M.; HUREK, T.; SARKAR, A.; BODROSSY, L.; VAN OVERBEEK, L.; BRAR, D.; VAN ELSAS, J. D.; REINHOLD-HUREK, B. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Molecular Plant-Microbe Interactions, v. 25, n. 1, p. 28-36, 2012.

SHAHAROONA, B.; ARSHAD, M.; ZAHIR, Z. A. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology, v. 42, n. 2, p. 155-159, 2006.

SHAHAROONA, B.; JAMRO, G. M.; ZAHIR, Z. A.; ARSHAD, M.; MEMON, K. S. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). Journal of Microbiology and Biotechnology, v. 17, n. 8, p. 1300-1307, 2007.

SHEN, F. T.; YEN, J. H.; LIAO, C. S.; CHEN, W. C.; CHAO, Y. T. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability (Switzerland), v. 11, n. 4, 2019.

SIDDIQUI, I. A.; SHAUKAT, S. S. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biology and Fertility of Soils, v. 36, n. 4, p. 260-268, 2002.

SIDDIQUI, Z. A.; BAGHEL, G.; AKHTAR, M. S. Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World Journal of Microbiology and Biotechnology, v. 23, n. 3, p. 435-441, 2007.

SILVA, M. D. O.; FREIRE, F. J.; LIRA JUNIOR, M. A.; KUKLINSKY-SOBRAL, J.; COSTA, D. P. D.; LIRA-CADETE, L. Isolamento e prospecção de bactérias endofíticas e epifíticas na cana-de-açúcar em áreas com e sem cupinicida. Revista Brasileira de Ciência do Solo, v. 36, p. 1113-1122, 2012.

SILVA, M. L. R. B.; FIGUEROA, C. S.; MERGULHÃO, A. C. E. S.; LYRA, M. C. C. P. Diversidade e potencial de solubilização de fosfato in vitro por bactérias endofíticas associadas à cultura da palma forrageira (Opuntia e Nopalea) em Pernambuco. Pesquisa Agropecuária Pernambucana, v. 19, n. 2, p. 85-88, 2014.

SILVEIRA, A. P. D.; IÓRIO, R. P. F.; MARCOS, F. C. C.; FERNANDES, A. O.; SOUZA, S. A. C. D.; KURAMAE, E. E.; CIPRIANO, M. A. P. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 112, n. 2, p. 283-295, 2019.

SILVEIRA, A. P. D. D.; SALA, V. M. R.; CARDOSO, E. J. B. N.; LABANCA, E. G.; CIPRIANO, M. A. P. Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Applied Soil Ecology, v. 107, p. 313-319, 2016.

SOUSA, C. A.; LIRA JUNIOR, M. A.; FRACETTO, G. G. M.; FREIRE, F. J.; KUKLINSKY-SOBRAL, J. Evaluation methods used for phosphate-solubilizing bacteria. African Journal of Biotechnology, v. 15, n. 34, p. 1796-1805, 2016.

SOUZA, R. D.; AMBROSINI, A.; PASSAGLIA, L. M. P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, v. 38, p. 401-419, 2015.

STIRLING, G. R. Biological control of plant-parasitic nematodes. Diseases of Nematodes, v. 2, p. 93-140, 2018.

STURZ, A. V.; NOWAK, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, v. 15, n. 2, p. 183-190, 2000.

SULOCHANA, M. B.; JAYACHANDRA, S. Y.; KUMAR, S. A.; PARAMESHWAR, A. B.; REDDY, K. M.; DAYANAND, A. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Applied biochemistry and biotechnology, v. 174, n. 1, p. 297-308, 2014.

TAULÉ, C.; CASTILLO, A.; VILLAR, S.; OLIVARES, F.; BATTISTONI, F. Endophytic colonization of sugarcane (Saccharum officinarum) by the novel diazotrophs Shinella sp. UYSO24 and Enterobacter sp. UYSO10. Plant and Soil, v. 403, n. 1-2, p. 403-418, 2016.

TAULÉ, C.; MAREQUE, C.; BARLOCCO, C.; HACKEMBRUCH, F.; REIS, V. M.; SICARDI, M.; BATTISTONI, F. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant and Soil, v. 356, n. 1-2, p. 35-49, 2012.

THEISEN, G.; SILVA, J. J. C.; SILVA, J. S.; ANDRES, A.; ANTEN, N. P. R.; BASTIAANS, L. The birth of a new cropping system: towards sustainability in the sub-tropical lowland agriculture. Field Crops Research, v. 212, p. 82-94, 2017.

TIAN, B.; YANG, J.; ZHANG, K. Q. Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, v. 61, n. 2, p. 197-213, 2007.

TORRES, M.; LLAMAS, I.; TORRES, B.; TORAL, L.; SAMPEDRO, I.; BÉJAR, V. Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Applied Soil Ecology, v. 150, p. 103453, 2020.

UZOH, I. M.; BABALOLA, O. O. Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems and Environment, v. 265, p. 524-534, 2018.

VALDEZ-NUÑEZ, R. A.; CASTRO-TUANAMA, R.; CASTELLANO-HINOJOSA, A.; BEDMAR, E. J.; RÍOS-RUIZ, W. F. PGPR Characterization of Non-Nodulating Bacterial Endophytes from Root Nodules of Vigna unguiculata (L.) Walp. In: ZÚÑIGA-DÁVILA, D.;GONZÁLEZ-ANDRÉS, F., et al (Ed.). Microbial Probiotics for Agricultural Systems. Advances in Agronomic Use. Zurique: Springer International Publishing, 2019. p.111-126.

VASILEVA, E. N.; AKHTEMOVA, G. A.; ZHUKOV, V. A.; TIKHONOVICH, I. A. Endophytic microorganisms in fundamental research and agriculture. Ecological genetics, v. 17, n. 1, p. 19-32, 2019.

VERMA, S. K.; WHITE, J. F. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). Journal of Applied Microbiology, v. 124, n. 3, p. 764-778, 2018.

WALLEY, F. L.; GILLESPIE, A. W.; ADETONA, A. B.; GERMIDA, J. J.; FARRELL, R. E. Manipulation of rhizosphere organisms to enhance glomalin production and C sequestration: Pitfalls and promises. Canadian Journal of Plant Science, v. 94, n. 6, p. 1025-1032, 2014.

WHITE, J. F.; KINGSLEY, K. L.; ZHANG, Q.; VERMA, R.; OBI, N.; DVINSKIKH, S.; ELMORE, M. T.; VERMA, S. K.; GOND, S. K.; KOWALSKI, K. P. Review: Endophytic microbes and their potential applications in crop management. Pest Management Science, v. 75, n. 10, p. 2558-2565, 2019.

WIN, K. T.; FUKUYO, T.; KEIKI, O.; OHWAKI, Y. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry, v. 127, p. 599-607, 2018.

WOOD, J. L.; ZHANG, C.; MATHEWS, E. R.; TANG, C.; FRANKS, A. E. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Scientific Reports, v. 6, n. October, p. 1-10, 2016.

XIA, Y.; ZHANG, M.; TSANG, D. C. W.; GENG, N.; LU, D.; ZHU, L.; IGALAVITHANA, A. D.; DISSANAYAKE, P. D.; RINKLEBE, J.; YANG, X.; OK, Y. S. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, v. 63, n. 1, 2020.

XING, Y. X.; WEI, C. Y.; MO, Y.; YANG, L. T.; HUANG, S. L.; LI, Y. R. Nitrogen-Fixing and Plant Growth-Promoting Ability of Two Endophytic Bacterial Strains Isolated from Sugarcane Stalks. Sugar Tech, v. 18, n. 4, p. 373-379, 2016.

YOOLONG, S.; KRUASUWAN, W.; THANH PHẠM, H. T.; JAEMSAENG, R.; JANTASURIYARAT, C.; THAMCHAIPENET, A. Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Scientific Reports, v. 9, n. 1, 2019.

ZAKRY, F. A. A.; SHAMSUDDIN, Z. H.; ABDUL RAHIM, K.; ZAWAWI ZAKARIA, Z.; ABDUL RAHIM, A. Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the ¹⁵N isotope dilution technique. Microbes and environments, v. 27, n. 3, p. 257-262, 2012.

ZAREI, T.; MORADI, A.; KAZEMEINI, S. A.; FARAJEE, H.; YADAVI, A. Improving sweet corn (Zea mays L. var saccharata) growth and yield using Pseudomonas fluorescens inoculation under varied watering regimes. Agricultural Water Management, v. 226, p. 105757, 2019.

ZHANG, G.; SUN, Y.; SHENG, H.; LI, H.; LIU, X. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. Plant Physiol Biochem, v. 125, p. 178-184, 2018.




DOI: https://doi.org/10.12661/pap.2020.010

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM

Apontamentos

  • Não há apontamentos.



Pesquisa Agropecuária Pernambucana
ISSN 0100-8501 (impresso)
ISSN 2446-8053 (online)


Instituto Agronômico de Pernambuco (IPA)
Av. General San Martin, 1371
Bongi, Recife, PE, CEP 50761-000
revista.pap@ipa.br